
Document-Term Matrix in NLP: 

Count and TF-IDF Scores Explained 

 

Natural Language Processing (NLP) is a subfield of Linguistics and Computer 

Science that deals with processing and understanding huge volumes of unstructured 

text data. 

To leverage NLP to analyze textual data, you’ll have to come up with a numeric 

representation of the text corpus, or the collection of documents. This tutorial will teach 

you all about Document-Term Matrix (DTM)—a matrix representation of the text corpus. 

By the end of this tutorial, you'll have learned enough to understand the Document-Term 

Matrix representation, and the significance of the TF-IDF score. And you'll also be able 

to generate Document-Term matrices for any text corpus in scikit-learn. 
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What is the Document-Term Matrix? 
In the context of NLP, a text corpus is simply a collection of documents. And a document 

can be a sentence, a group of sentences, or even a phrase—depending upon the use 

case.  

Here’s a simple example of a corpus with only 3 documents 
D1 

, 
D2 

and 
D3 

. 
D1: NLP is super cool to learn and apply. 

D2: I am currently learning NLP, you can too! 

D3: CS224n at Stanford is the best NLP class you can ever take! 

Let's suppose the text corpus contains M documents, and N terms in all. The general 

structure of the Document-Term Matrix is shown below: 

 
Document-Term Matrix 

  



Let's parse the matrix representation: 
• D1 

, 
D2 

,..., 
DM 

are the 
M 

documents 
• T1 

, 
T2 

,..., 
TN 

are the 
N 

terms. 

One of the simplest ways of populating the Document-Term Matrix is using the number 

of occurrences of the N terms across all the M documents. 

• The entry 
w11 

denotes the number of times the term 
T1 

occurs in the document 
D1 

, 
w12 

denotes the number of times the term 
T2 

occurs in the document 
D1 

, and so on. 

• In general, 
wij 

denotes the number of times the term 
Tj 

occurs in the document 
Di 

. 



This way, a term that occurs frequently in the text corpus will have a much higher score, 

and a term that occurs rarely in the text corpus will have a much lower score. The 

ordering and semantic relationship between the terms is lost. 

Populating the Document-Term Matrix as shown above—with the number of times a term 

occurs in the documents is both simple and intuitive. However, are there any caveats 

you should be aware of? 

 
Head over to the next section to find out. 

  



What is the TF-IDF Score? 
In populating the Document-Term Matrix with the number of occurrences, frequently 

occurring terms are assigned a higher score than the rarely occurring terms. 

Now, take a step back, and ask yourself the question: "Is a frequently occurring term 

necessarily important?"  

Well, this may not always be the case. 

For example, when you're reading a piece of text on astronomy—you'll come across 

words like 'sky' and 'stars' very often. But would you not like to see beyond these words 

to understand what the text is talking about? 

 
This is exactly the motivation behind TF-IDF score—another useful metric that you can 

use to populate the Document-Term Matrix. 

TF-IDF score is a combination of two metrics: the Term Frequency (TF) and the Inverse 

Document Frequency (IDF). 

  



TF-IDF Score Equation 
The TF-IDF score is given by the following equation: 

 
Where,  

• TF_ij is the number of times the term 

Tj occurs in the document  
Di 

• Dfj is the number of documents containing the term 
Tj 

Let's parse the above expression: 

• The first term, 

TF_ij is called the Term Frequency (TF). It is identical to the count we had in 

the previous section: the number of times the term 

Tj occurs in the document 
Di 

 

So, the more frequently a term occurs in a particular document, the higher its TF 

score. 

• The second term is the Inverse Document Frequency (IDF). 

 
Here,  

• M is the total number of documents, and  

• df_j is the number of documents containing the term TF_ij 

  



What is the Significance of the TF-IDF Score? 
Let's first understand the significance of the IDF score. 

If the term 
Tj occurs in all the documents, the value of 
df_j = M 

. This would leave you with 
log(M/M) = log(1) 

 

 

Recall from your school math: log(1) = 0  
 

On the other hand, if the term 

Tj occurs in only one of the 

M documents, you'll have 
log(M/1) = log(M) 

Notice how this is the maximum value that the IDF score can take. 

Putting it all together: 

• A term that occurs frequently in a particular document has a higher TF score. 

• A term that occurs rarely across the entire corpus has a higher IDF score. 

• The TF-IDF score is the product of the TF and the IDF scores. 

 

In simple terms, the TF-IDF score says, "Hey! I believe terms that occur frequently in a 

particular document are likely more important than terms that occur frequently in all 

documents in the corpus!" 

 

Though the TF-IDF score fails to capture contextual relationships between terms in the 

corpus, it's still considered an effective metric and is preferred over counting only the 

number of occurrences. 

Now that you’ve learned the basics of Document-Term Matrix and the TF-IDF scores, 

let’s now see how you can generate the DTM and populate it with the TF-IDF score in 

scikit-learn. 

  



How to Generate the Document-Term Matrix in scikit-learn 
1. First step is to import the 

TfidfVectorizer 

class from scikit-learn's feature extraction module for text data. This  
TfidfVectorizer  

helps generate the Document-Term Matrix populated with the TF-IDF score. 
from sklearn.feature_extraction.text import TfidfVectorizer 

 

2. Next, get our text corpus 

The following code cell contains a piece of text on computer programming—and 

this will be our corpus of interest. 
text=["Computer programming is the process of designing and building an executable 

computer program to accomplish a specific computing result or to perform a specific 

task.", 

      "Programming involves tasks such as: analysis, generating algorithms, profiling 

algorithms' accuracy and resource consumption, and the implementation of algorithms in a 

chosen programming language (commonly referred to as coding).", 

      "The source code of a program is written in one or more languages that are 

intelligible to programmers, rather than machine code, which is directly executed by the 

central processing unit.", 

      "The purpose of programming is to find a sequence of instructions that will automate 

the performance of a task (which can be as complex as an operating system) on a computer, 

often for solving a given problem.", 

      "Proficient programming thus often requires expertise in several different subjects, 

including knowledge of the application domain, specialized algorithms, and formal logic.", 

      "Tasks accompanying and related to programming include: testing, debugging, source 

code maintenance, implementation of build systems, and management of derived artifacts, 

such as the machine code of computer programs.", 

      "These might be considered part of the programming process, but often the term 

software development is used for this larger process with the term programming, 

implementation, or coding reserved for the actual writing of code.", 

      "Software engineering combines engineering techniques with software development 

practices.", 

      "Reverse engineering is a related process used by designers, analysts and 

programmers to understand and re-create/re-implement"] 

 

3. Let's instantiate a 
Tfidfvectorizer 

object. Let's call it 
vectorizer 

vectorizer = 

TfidfVectorizer(stop_words='english',smooth_idf=True) 

Now, call the 
fit_transform() 

method on the 
vectorizer 

with 
text 

as the argument. 



input_matrix = vectorizer.fit_transform(text) 

 

print(input_matrix) 

 # [truncated view] 

 # sparse representation of the DTM 

 # non-zero indices and TF-IDF score   

  (0, 83) 0.21527315443847012 

  (0, 55) 0.25487697925239533 

  (0, 73) 0.25487697925239533 

  (0, 20) 0.25487697925239533 

  (0, 80) 0.5097539585047907 

  (0, 1) 0.25487697925239533 

  (0, 63) 0.21527315443847012 

  (0, 33) 0.25487697925239533 

  (0, 11) 0.25487697925239533 

  (0, 27) 0.25487697925239533 

As you can see, the 
input_matrix 

has the scores, and the indices corresponding to the non-zero entries only—and not the entire matrix. 

To cast it into a matrix of dimensions 
M x N 

, you can use the 
to_dense() 

method, as shown in the code snippet below: 
input_matrix = vectorizer.fit_transform(text).todense() 

# Truncated view of the entire matrix 

 

[[0.         0.25487698 0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0.25487698 

  0.         0.         0.         0.         0.         0. 

  0.         0.37434759 0.25487698 0.         0.         0. 

  0.         0.         0.         0.25487698 0.         0. 

  0.         0.         0.         0.25487698 0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.25487698 0.         0.         0.         0.18717379 

  0.         0.         0.         0.21527315 0.         0.13251329 

  0.         0.         0.         0.         0.         0. 

  0.         0.25487698 0.         0.         0.         0. 

  0.         0.         0.50975396 0.         0.         0.21527315 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.        ] 



 [0.         0.         0.22103745 0.         0.56007525 

0.22103745 

  0.         0.         0.         0.         0.         0. 

  0.         0.22103745 0.         0.18669175 0.         0.22103745 

  0.         0.         0.         0.         0.22103745 0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.22103745 0.         0.         0.16232309 0. 

  0.         0.         0.         0.22103745 0.         0.22103745 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.         0.         0.22103745 0.         0.         0.22983952 

  0.         0.         0.22103745 0.         0.         0. 

  0.22103745 0.         0.         0.         0.         0. 

  0.         0.         0.         0.         0.         0. 

  0.18669175 0.         0.         0.         0.         0. 

  0.         0.         0.        ] 

 

Conclusion 
I hope this tutorial helped you understand what the Document-Term Matrix (DTM) is, 

and the significance of the TF-IDF score. 

You can use the above code to generate the DTM for your favorite piece of text—simply 

replace the text 

with your text corpus, and you're all ready to go! 

Generating the DTM is often the first step in many unsupervised NLP tasks such as topic 

modeling. 
 


